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Abstract
In this survey paper, we provide a compre-
hensive overview of approaches to effectively
utilize synthetic data for various Natural Lan-
guage Processing (NLP) applications. Many
NLP tasks are solved by the paradigm of pre-
training followed by fine-tuning, where the
task solver is first initialized using large-scale
unlabeled examples and then fine-tuned with
strong supervision using examples that mimic
the target task. Both stages can benefit from
additional data generated synthetically, either
through heuristics or end-to-end training. This
synthetic data can be utilized in multiple ways,
such as generating weak labels for downstream
applications or creating entirely new samples
from a generative model. Along with the bene-
fits of synthetic data, this paper also highlights
the different challenges associated with its gen-
eration and curation, with a key challenge being
the identification of imposters among the ac-
ceptable samples. Some of these challenges are
also seen in multilingual applications, where
data scarcity is a major issue. Our aim with
this survey is to provide readers with an under-
standing of current approaches to leveraging
synthetic data in the context of multilingual
applications.

1 Introduction

With the advent of new machine learning mod-
els every day, they have been able to show strong
performance in many NLP applications. Most of
their performance can be credited to the sheer size
and amount of data that they have been trained
on. Many efforts have been able to put together
vast amounts of resources to make data available
on the internet open to the public. A majority of
this data is already being utilized in some of the
recent LLMs (Touvron et al., 2023), which raises
the question of whether we will ever run out of data.
A study done by Villalobos et al. (2024) shows that
we will run out of fresh text data by the year 2050.
Even if we can leverage clean data until then, many

problems exist like noisy samples, scarcity, privacy
concerns, domain bias, and the amount of effort
and time that can go into collecting or annotating
datasets.

Synthetic data refers to any type of data that
can be used to mimic a task at hand and follows
the pattern of data from the real world. It can be
generated by heuristics, algorithms, contextualized
generation, or even imitation. The limitation of
the synthetic data relies highly on the method of
generation and the task at hand. Despite its cons,
synthetic data can be very useful in scenarios where
real-world data is infeasible to collect or make due
to its ability to generate at scale. We will highlight
some of the common practices and issues faced
while utilizing synthetic data.

Large language models (LLMs) (Brown et al.,
2020a; Workshop et al., 2022; Almazrouei et al.,
2023; Lin et al., 2022) have been able to per-
form very well on downstream tasks like MMLU
(Hendrycks et al., 2021), Big-Bench (Srivastava
et al., 2022), etc, and have even started to reach
human potential in many of these tasks. But this
performance has very largely been credited to their
scale and the vast amount of data that they have
been fed. Due to an increase in language under-
standing and generation abilities, LLMs have be-
come a prime candidate for generating synthetic
data. Most of these language models (LMs) per-
form well in languages like English where abun-
dant data is available (Kudugunta et al., 2023), but
a vast majority of languages don’t have comparable
data as compared to English. As a consequence,
many LLMs, both monolingual and multilingual,
involving these languages still show poor perfor-
mance for various downstream tasks. For exam-
ple, the largest open source multilingual model
BLOOM (Workshop et al., 2022) covers 46 natural
languages spanning 9 language families, but the top
5 languages comprise 74.14% of the data. Despite
the benefits of multilingualism (Dabre et al., 2020),



this skew in data still means that the low-resource
languages will not perform well.

Fortunately, synthetic data has shown to be use-
ful for many multilingual NLP applications like
using back translations (Sennrich et al., 2016a),
(Edunov et al., 2018) for improving Machine trans-
lation performance (Marie et al., 2020),(Bogoy-
chev and Sennrich, 2019),(Ni et al., 2022) or for
classification tasks like native language identifi-
cation (Goldin et al., 2018), etc. But there has
been very little work on utilizing synthetic data
for pretraining LMs, this is mostly because syn-
thetic data generated from open-ended generations
poses many problems like hallucination (Maynez
et al., 2020), ungrounded non-factual text (Thorne
et al., 2018), etc. Instead, machine translation al-
leviates this problem by translating a source text
in one language into another. However, translation
errors exist and can reduce the quality of synthetic
text. A naive approach would be to use round-trip-
translation (RTT) BLEU scores to evaluate the qual-
ity of synthetic text but this requires twice the com-
pute and RTT errors make these scores unreliable.
Other machine translation evaluation approaches
like BARTScore (Yuan et al., 2021), T5Score (Qin
et al., 2023), MQM & COMET (Rei et al., 2020)
either rely on large scale models to evaluate the
quality of synthetic text or use large scale human
annotated scores which makes it hard to scale for
evaluating large amounts of synthetic text. Ap-
proaches like KenLM (Heafield, 2011) have been
used to filter monolingual corpora based on per-
plexity.

2 Background

We limit ourselves to only text-based methods and
do not extend to multi-modal synthetic data gener-
ation techniques. With this, we classify synthetic
data generation methods in NLP into the following
types:

1. Weak labelers/augmentation: A lot of la-
beled NLP tasks like classification-based
(NER Tagging, POS tagging, sentiment clas-
sification, etc.) and retrieval-based (passage
retrieval, LaBSE filtering, NLI) tasks require
large-scale corpora for attaining strong perfor-
mance as compared to humans. But most of
these tasks do not have data available in the
real world and occur as latent variables (E.g.
POS Tags). Creating a sufficient amount of
data for these tasks using human annotators

is a big challenge. Instead, weak supervision
can act as a proxy for generating large-scale
noise data for these tasks. Methods like itera-
tive fine-tuning, label mining, and similarity-
based methods have served as a strong proxy
for mining these labels and showing compet-
itive performance. However, these methods
are not applicable to many generative tasks
because they rely on heuristics and provide
less control.

2. Referenceless Generation: The concept of
"large" has evolved rapidly over the past
decades. In the early days of NLP, models
with 10,000 to 100,000 parameters were con-
sidered large. Today, state-of-the-art models
often have 100 billion parameters. This scal-
ing of language models has led to the creation
of some of the largest NLP models to date,
such as GPT-3 (Brown et al., 2020b), with
175 billion parameters, and PaLM (Chowdh-
ery et al., 2022), with approximately 540 bil-
lion parameters. This increase in size has sig-
nificantly enhanced the performance of these
models across a wide range of NLP tasks, in-
cluding language modeling, question answer-
ing, and language translation. Referenceless
generation methods rely on minimal or zero
supervision to generate purely new content
that has not been seen in the model’s training
data before. These LLMs can imitate human-
like text very easily and can serve as a proxy
for generative new text for a particular domain
or task. Even with such strong text generation
capabilities, these methods face issues from
hallucinated, non-factual text and biased con-
tent. These are very open research problems
for current LLMs. Recent study on TinyLMs
that are trained on purely synthetically gen-
erated text from models like GPT3.5 and be-
ing as small as 10M parameters have been
shown to produce fluent and consistent stories
with almost perfect grammar (Eldan and Li,
2023) which means LMs even at a small scale
have language understanding. Challenges like
BabyLM (Warstadt et al., 2023) focus on im-
proving LMs with a fixed data budget which
enables exhaustive study of LM development
methodologies, which can then be applied to
larger LMs.

3. Reference based filling: Although reference-



less generation methods suffer due to lack
of contextualized representations, reference-
based filling mechanisms rely on the model’s
contextualized training abilities E.g. BERT
(Devlin et al., 2018) to allow the model to
generate reliable labels. These can also be ex-
tended to Seq-2-Seq models or Decoder-only
models by using prompting. NLP prompt-
based learning techniques aim to learn an LM
that models the probability P (x; θ) of text x,
enabling y prediction without large supervised
datasets. For tasks that involve text generation
or standard auto-regressive language models,
prefix prompts are typically more effective as
they align well with the model’s left-to-right
nature. Cloze prompts, on the other hand,
are better suited for tasks that utilize masked
language models as they closely match the
form of the pre-training task. Full-text recon-
struction models are more versatile and can
use either cloze or prefix prompts. In tasks
that require multiple inputs, such as text pair
classification, prompt templates must accom-
modate space for two inputs. The most nat-
ural approach to creating prompts is to man-
ually create intuitive templates based on hu-
man introspection. For instance, the LAMA
dataset (Petroni et al., 2019) provides manu-
ally crafted cloze templates for probing knowl-
edge in language models. GPT-3 (Brown et al.,
2020b) uses manually crafted prefix prompts
to handle a variety of tasks such as question
answering, translation, and probing for com-
mon sense reasoning. Reference-based fill-
ing methods also include machine-generated
text where a reference sentence X in the
source language is used to generate a target
sentence in Y language, these synthetically
generated translations have shown improve-
ments over many Machine Translation tasks
e.g. using back translations (Sennrich et al.,
2016a), (Edunov et al., 2018) to enhance Ma-
chine translation (Marie et al., 2020), (Bogoy-
chev and Sennrich, 2019), (Ni et al., 2022),
or for tasks such as native language identifi-
cation (Goldin et al., 2018). However, there’s
limited exploration of using synthetic data for
pretraining LMs due to issues like hallucina-
tion (Maynez et al., 2020), and ungrounded
non-factual text (Thorne et al., 2018).

3 Coverage of Papers

Now we cover papers related to synthetic data in
the following three settings.

3.1 Translationese Pretraining

“Translationese” is a term used to describe peculiar-
ities in the text translated into a specific language,
differentiating it from content originally written in
that language (Gellerstam, 1986). Translated texts
into the target language (via humans or machine-
generated) often show distinctive features that dif-
ferentiate them from their original counterparts in
the target language. These disparities arise from
either the influence of the translation process itself
on the final product or the inherent “fingerprints”
of the source language subtly present in the tar-
get language rendition (Rabinovich and Wintner,
2015). This is a common phenomenon in transla-
tion models where the target language translations
often show characteristics of the source language
and add bias to the evaluation of downstream tasks
(Toral et al., 2018), (Zhang and Toral, 2019), (Gra-
ham et al., 2019). So far a lot of work on syn-
thetic translated data has been done for using back
translations (Sennrich et al., 2016a), (Edunov et al.,
2018) for improving Machine translation perfor-
mance (Marie et al., 2020),(Bogoychev and Sen-
nrich, 2019),(Ni et al., 2022) or for classification
tasks like native language identification (Goldin
et al., 2018), etc. Tranlationese data has been used
for many tasks but here highlights the efficacy of
using translationese data for pretraining language
models.

Existing approaches like Conneau et al. (2018)
focus on transfer learning where a similar base-
line is used called translate-train. In translate-train,
a multilingual PLM (e.g., multilingual BERT) is
fine-tuned using the original source language and
machine-translated target language and then evalu-
ated on the target language. This approach utilizes
task-specific data translated into target language
for fine-tuning, whereas our work focuses on pre-
training rather than fine-tuning these language mod-
els and the effects synthetic text can have for pre-
training and diverse downstream NLU and NLG
tasks. Oh et al. (2022) also focus on leveraging
translate-train and translate-test together for better
cross-lingual fine-tuning.

Now we describe our framework (Doshi et al.,
2024) for leveraging synthetic data for LM training.
This process consists of collecting monolingual



Figure 1: Overview of approach given by Doshi et al. (2024) to pre-train language models using translationese data.

(clean) data from the web for low-resource lan-
guages, training TinyLMs with it, translating clean
data from a high resource language such as English
into low-resource languages, using the aforemen-
tioned TinyLMs to filter synthetic data, and then
using this filtered data to train LMs for downstream
tasks. Our framework is illustrated in Figure 1. If
the generated data is too noisy or lacks diversity,
the potential for performance improvement may be
limited (Epaliyana et al., 2021).

3.2 Synthetic Data in Multi-Source Machine
Translation

Multi-source machine translation revolves around
leveraging a source and a relatively high-resource
pivot language jointly in a multi-source ensembling
setup to improve translation into a low-resource
target language.

Back-translation augmentation is a widely used
data augmentation method in multilingual language
models. This technique creates synthetic parallel
training data from monolingual sources (Xu et al.,
2022; Bi et al., 2021; Caswell et al., 2019; Liao
et al., 2021; Marie et al., 2020; Pham et al., 2021;
Sennrich et al., 2016b). For example, Sennrich
et al. (2016b) back-translated monolingual target
data into source language data, generating addi-
tional parallel training samples that significantly
enhanced translation tasks. However, generating
synthetic data through back-translation has limi-
tations. The performance of the back-translation
method significantly affects the quality and diver-
sity of the synthetic data.

During the statistical MT era, pivot language
MT was implemented using either a cascading or

phrase table triangulation approach (Utiyama and
Isahara, 2007). With the advent of NMT, various
pivoting methods emerged that leveraged transfer
learning(Zoph et al., 2016; Kim et al., 2019; Li
et al., 2022). Furthermore, the rise of multilingual
NMT enabled pivoting to be performed explicitly
through cascading or implicitly via zero-shot trans-
lation (Dabre et al., 2020).

Zoph and Knight (2016) introduced the multi-
source technique in NMT, which exploits multiple
source languages to improve translation accuracy
in the target language. They employed an encoder-
decoder framework with multiple encoders, each
dedicated to one source language, and combined
the representations from these encoders for the de-
coder to generate the target sentence. (Firat et al.,
2016) introduced an approach called late averaging
with multiple encoder-decoder pairs each mapped
to a source and the probabilities produced by all
the decoders are averaged to produce the final prob-
abilities for generating the next token. They also
develop an approach called early averaging that
centers on the concept of merging two distinct
translation paths when calculating time-dependent
context vectors within the decoder. For each time
step in the decoder, dedicated context vectors are
computed for each source language. These two
context vectors are averaged and used as the final
context vector. Additionally, Garmash and Monz
(2016) proposed a multi-source ensembling method
using a mixture of experts. They trained multiple
models with different initializations and used them
as experts to perform translation.

Nishimura et al. (2018b) leverage an incomplete
multilingual corpus to enhance translation quality



using multi-source NMT. They use this incomplete
multiway parallel data and incorporate a <NULL>
token for missing source sentences during training,
their approach effectively utilizes partially avail-
able multiway parallel data, resulting in significant
improvements over conventional one-to-one NMT
systems. Nishimura et al. (2018a) highlight the
challenge of training multi-source Neural Machine
Translation (NMT) systems due to the scarcity of
n-way parallel corpora. To address this issue, they
propose a data augmentation technique wherein
they train two multi-source NMT systems and use
them to create synthetic data and train systems
again using this synthetic data. This iterative pro-
cess continues until both systems’ performance
converges.

Libovický and Helcl (2017) investigate vari-
ous attention mechanisms in the context of multi-
source NMT. They present three strategies: serial,
parallel, and hierarchical. In the serial strategy,
encoder-decoder attention is computed sequentially
for each input encoder. The query set for each
cross-attention is derived from the preceding self-
attention’s context vectors. In the parallel combina-
tion strategy, each encoder is attended to indepen-
dently, with the resulting context vectors summed
up. All encoders are attended using the same set
of queries from the self-attention sub-layer. The
hierarchical combination involves computing at-
tention independently for each input, treating the
resulting contexts as states for another input, and
then computing attention again over these states.

Huang et al. (2020) introduced a multi-stage
training approach for multi-source NMT. In the
first stage, the model is trained on monolingual cor-
pora to learn the sequence generation task. Subse-
quently, the model is trained using parallel data for
one-to-one translation tasks. Finally, fine-tuning is
conducted for multi-sourcing.

More recently, Macháček et al. (2023) have used
a multisourcing approach for the Automatic Speech
Translation (AST) task. AST is susceptible to er-
rors in speech recognition. However, since speech
recognition systems in different languages may
make different errors, they proposed that these
diverse sources could complement each other in
terms of the information they provide. Conse-
quently, they developed a multi-source AST sys-
tem, much more robust compared to the individual
AST systems.

3.3 Synthetic Data in OGD Systems

This section covers research related to three topics:
1) Open Government Data (OGD), the current de
facto system for data transparency in government;
2) Similar technology implementations from non-
government domains; and 3) Utilizing synthetic
data for OGD systems.

Attard et al. (2015) and Tang and Jiang (2021)
provide a comprehensive overview of OGD ter-
minology. Wibowo et al. (2023) focus on how
OGD can be used as an effective tool for citizen
engagement across various cities and use cases.
Many OGD initiatives fail due to usability issues,
as discussed by Hossain et al. (2021). Chakravarty
(2018) analyze why OGD initiatives in India face
challenges.

Mamalis et al. (2024) demonstrate how large lan-
guage models (LLMs) like ChatGPT can retrieve
relevant statistics from OGD systems in a zero-shot
manner. Peña et al. (2023) explore the use of LLMs
for topic classification in public affairs documents.

Doddapaneni et al. (2023) and Kakwani et al.
(2020) have released training and evaluation sets, as
well as pre-trained BERT (Devlin et al., 2019) mod-
els for Indian languages. Dabre et al. (2022) show
that script unification for Indian languages can im-
prove performance in low-resource languages. Haq
et al. (2023) illustrate how machine-translated data
can enhance retriever performance.

4 Challenges

Creating synthetic data for multilingual natural lan-
guage processing (NLP) poses several challenges
due to the complexities involved in accurately rep-
resenting diverse languages. One significant issue
is maintaining linguistic diversity across different
languages. Each language has unique grammatical
structures, idiomatic expressions, and cultural con-
texts, which can be difficult to replicate accurately.
The creation of high-quality synthetic data necessi-
tates an intricate understanding of these linguistic
characteristics, but achieving this level of accuracy
is challenging.

Additionally, balancing data quantity and quality
presents a complex problem. While having a large
dataset is beneficial, over-reliance on synthetic data
may introduce biases or errors that are not present
in naturally occurring text. This can compromise
the integrity of the data and negatively impact the
performance of NLP models. Ensuring the useful-
ness of synthetic data is crucial, as synthetic data



may lack certain elements imitating real-world data.
This lack of authenticity can limit the generalizabil-
ity and robustness of NLP models, making them
less effective in real-world applications.

Moreover, the process of generating synthetic
data at scale demands substantial computational re-
sources and sophisticated algorithms. This process
is resource-intensive and costly, posing a signifi-
cant barrier to the widespread adoption of synthetic
data in multilingual NLP, especially for pretraining.
The need for advanced algorithms and significant
computational power adds another layer of com-
plexity to the already challenging task of creating
synthetic data. As the field progresses, address-
ing these challenges will be crucial to harnessing
the full potential of synthetic data in enhancing
multilingual NLP.

5 Summary

In this survey, we explored how synthetic data en-
hances Natural Language Processing (NLP), focus-
ing on its role in improving model training and
addressing data challenges like scarcity, noise, pri-
vacy issues, and bias. Synthetic data helps cre-
ate weak labels, generate new samples, and en-
hance machine learning models, especially for lan-
guages with limited resources. We analyzed vari-
ous methods of synthetic data generation and fil-
tering, including weak labelers and methods for
creating new samples. These methods benefit tasks
such as machine translation and language model
pre-training. While synthetic data shows promise,
it also brings challenges like maintaining linguis-
tic diversity, balancing data quality and quantity,
and managing computational demands, especially
in multilingual applications. In conclusion, syn-
thetic data offers significant potential for advancing
NLP, particularly in multilingual settings. Future
research should focus on refining algorithms to
generate high-quality synthetic data efficiently, ad-
dressing these challenges to improve NLP model
performance across languages and tasks.
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